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Collective atom-cavity coupling and nonlinear dynamics with atoms with multilevel ground states
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We investigate experimentally and theoretically the collective coupling between atoms with multilevel ground-
state manifolds and an optical cavity mode. In our setup the cavity field optically pumps populations among
the ground states. The ensuing dynamics can be conveniently described by means of an effective dynamical
atom-cavity coupling strength that depends on the occupation of the individual states and their coupling strengths
with the cavity mode. This leads to a dynamical backaction of the atomic populations on the atom-cavity coupling
strength which results in a nonexponential relaxation dynamics. We experimentally observe this effect with
laser-cooled 87Rb atoms, for which we monitor the collective normal-mode splitting in real time. Our results
show that the multilevel structure of electronic ground states can significantly alter the relaxation behavior in
atom-cavity settings as compared to ensembles of two-level atoms.
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I. INTRODUCTION

Many cavity QED experiments focus on implementing
ideal toy models by coupling effective two-level atoms to
single light modes. However, only a few setups have taken
the multilevel structure of ground and excited states of re-
alistic atoms into account [1,2]. In general, the coupling
strength depends on the atomic transition coupled to the cavity
field. Previous work has exploited this effect to generate spin
squeezing of hyperfine ground-state levels due to ac Stark
shifts that depend on the collective spin [3,4]. This principle
has also been used in the context of the Dicke phase transi-
tion including spin degrees of freedom [5]. Recent work has
observed the formation of spin textures [6], spin-dependent
interactions [7–9], and ground-state bistability [10]. Despite
this progress, collective coupling of atoms with magnetic sub-
levels in the ground and excited states, illustrated in Fig. 1, is
widely unexplored. Here the coupling strength depends on the
individual transitions via their Clebsch-Gordan coefficients,
and complex relaxation dynamics to the steady state can arise
when sublevel-changing processes (pumping) influence the
collective coupling strength [11]. Such complex dynamics has
been proposed for dissipative many-body quantum systems
with interactions [12–14]. Moreover, superradiance in this
kind of system can lead to the population of long-lived dark
states, as has been recently proposed in [15].

In this work we investigate the dynamics of an ensemble of
atoms with degenerate ground-state manifold when coupled
to a single-mode cavity (Fig. 1). We derive how the collective
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coupling strength depends on the population of the individual
sublevels and experimentally detect the collective atom-cavity
coupling strength in real time. Moreover, we show that the
backaction of the coupling strength on the intracavity light
field can lead to nonlinear dynamics within the manifold of
atomic ground states. This nonlinear behavior is exclusively
caused by the multilevel structure and is absent in the case
of two-level atoms. In particular, it does not require strong
pumping or mechanical backaction, which are well-studied
mechanisms that lead to nonlinear dynamics in atom-cavity
systems [16,17].

II. MULTILEVEL COLLECTIVE COUPLING

The hallmark of collective atom-cavity coupling is the
observation of a collective normal-mode splitting in the light
transmitted through the cavity. A number N of atomic two-
level systems resonantly coupled to the cavity with coupling
constant g0 splits the cavity transmission into two peaks with
separation [16]

�NMS = 2g0

√
N . (1)

This expression is valid in the weak-field and collective
strong-coupling regime, where g2

0N � �κ , with � and κ the
atomic excited state and cavity field decay rate, respectively.
Atom number variations can thus influence the transmission
through the cavity. We have recently used this effect to detect
Rydberg excitation dynamics in the cavity in real time [18].
Note that the atom number N is in general an effective atom
number that takes the intensity profile of the mode function
and the positions of the atoms into account. This can give rise
to optomechanical effects, such as optomechanical cooling,
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FIG. 1. Multilevel ground-state systems coupled to a single-
mode cavity. (a) In our experiment, the 5S1/2, F = 2 ground states
are coupled to the 5P3/2, F ′ = 3 states by a linearly polarized cavity
field driving π transitions with Clebsch-Gordan coefficients cm. The
measured atom-cavity spectrum indicates the detunings δp used in
the experiment (black open circles). (b) The model system describes
a simpler situation with two ground states used for analytical analysis
in Sec. IV. Here the cavity field drives σ+ transitions. The closed
red dots in (a) and (b) indicate the steady-state occupations and
the red circle in (b) shows the initial occupation. (c) The sketch
of the experiment shows a free-falling cloud of cold 87Rb atoms
inside the cavity with round-trip length l , pumped with probe laser
frequency ωp. The transmission is detected on an avalanche photo
diode (APD).

optical instabilities, and phase transitions where atoms are
arranged in complex structures [17,19,20]. In this work we
consider only weak cavity fields with negligible mechanical
backaction and thus treat N as a constant parameter.

The collective character of the normal-mode splitting is
based on the excitation of a coherent Dicke state at the lower
end of the Dicke ladder, where a number nph � N of cavity
photons is equally shared among a much bigger number N
of atoms [21–23]. Here we assume that initially the atomic
population is spread over a number ngs of independent ground
states. Each ground state is coupled by the cavity field to
an individual excited state, as shown in Fig. 1(a) for the Rb
5S1/2, F = 2 to 5P3/2, F ′ = 3 transition. The cavity field is
pumped by an external laser field with rate η and frequency
ωp, detuned from the atom transition frequency ωa and cavity
resonance frequency ωc by �a,c = ωp − ωa,c respectively. In
our experiment, the probe laser detuning is 2πδp = �a = �c

and the linearly polarized cavity field couples only states with
�m = 0, but similar models can be derived for any transition
and polarization state. An example with circularly polarized
light is shown in Fig. 1(b), where only �m = +1 transitions
are driven. For each ground state |g, m〉, a single coupling
constant gm can be defined by

gm = μm

√
ωa

h̄ε0Vmode
, (2)

with cavity mode volume Vmode. The dipole matrix element
μm of the corresponding transition can be expressed as
μm = μredcm, with the reduced dipole matrix element μred

and Clebsch-Gordan coefficient cm [24]. Thus the individual
coupling constants are proportional to the Clebsch-Gordan
coefficients of the corresponding transition, i.e.,

gm = g0cm, (3)

with g0 defined by (2) and (3).
In order to identify how the normal-mode splitting behaves

in the multilevel case, the usual atom-cavity Hamilton opera-
tor [16] is extended to

Ĥ = Ĥ0 + h̄
N∑

j=1

∑
m

gm(iâ†σ̂ jm + H.c.), (4)

where m runs over the magnetic quantum number of each
ground state, â† and â are the bosonic raising and lower-
ing operators of the cavity field, respectively, and σ̂ jm =
|g, m〉 j〈e, m′| is the dipole operator for the transition driven
by the cavity only, i.e., m′ = m and m′ = m ± 1 for a linearly
and a circularly polarized cavity field, respectively. The first
term of the Hamiltonian,

Ĥ0 = −h̄�a

∑
j,m

σ̂
†
jmσ̂ jm − h̄�câ†â + ih̄η(â† − â), (5)

is the uncoupled Hamiltonian of the atoms and the cavity field.
The second term of (4) describes the coherent coupling of
atom j in state m and the cavity field. Here, having neglected
the position dependence e−i�k·�r j of the atoms, we assume that
all atoms are placed at the positions of maximum coupling
strength. Other atomic density distributions can be considered
in the weak-field limit by introducing an effective atom num-
ber [17].

Including the atomic and cavity field decay, the dynamics
of the system is described by the master equation

ρ̇ = − i

h̄
[Ĥ, ρ] + �

∑
j,m

m+1∑
k=m−1

(
L̂ j

mkρL̂ j†
mk − 1

2

{
L̂ j†

mkL̂ j
mk, ρ

})

+2κ
(
âρâ† − 1

2 {â†â, ρ}). (6)

Note that, unlike in the atom-cavity coupling where each
ground state is coupled to a single excited state depending
on the chosen cavity field polarization, the spontaneous decay
couples all allowed dipole transitions. This is well justified
when the spontaneous emission is not influenced by the pres-
ence of the cavity whose Purcell factor is small [25]. Hence,
the spontaneous decay jump operators for the atom j reads

L̂ j
mk =

√
βk

m|g, m〉 j〈e, k|, (7)

where the factors βk
m describe the branching ratio of the de-

cay probability from the excited state |e, k〉 to the ground
state |g, m〉. The equations of motion for the expectation val-
ues of the cavity and atomic operators can be derived from
Eqs. (4)–(7). Neglecting atom-photon correlations, i.e., mak-
ing a mean-field approximation, the equations read

ȧ = −(κ − i�c)a +
∑
j,m

gmσ jm + η, (8)

σ̇ jm = −
(

�

2
− i�a

)
σ jm + gmσ z

jma, (9)

023714-2



COLLECTIVE ATOM-CAVITY COUPLING AND NONLINEAR … PHYSICAL REVIEW A 107, 023714 (2023)

Ṗjm = −�ρee
jm′ + �

m+1∑
k=m−1

βk
mρee

jk, (10)

ρ̇ee
jm′ = −�ρee

jm′ − gm(aσ
†
jm + a∗σ jm). (11)

Here we have introduced the quantity Pjm = ρ
gg
jm + ρee

jm′ as
the probability that atom j participates in transition m → m′
driven by the cavity, with ρ

gg
jm and ρee

jm′ the probability of the
jth atom being in the ground state |g, m〉 j and excited state
|e, m′〉 j , respectively. Its values are changed by spontaneous
decay with rates �βk

m. The inversion of atom j within transi-
tion m is given by σ z

jm = ρee
jm′ − ρ

gg
jm = 2ρee

jm′ − Pjm.
We assume that all atoms participating in the transition

m → m′ follow the same internal dynamics such that σ jm =
σ j′m ≡ σm, Pjm = Pj′m ≡ Pm, and ρee

jm′ = ρee
j′m′ ≡ ρee

m′ . Thus,
Eqs. (8)–(11) form a set of only 3ngs + 1 differential equa-
tions, compared to the full set of 3Nngs + 1 equations. The
steady-state solution of the intracavity power obtained from
Eqs. (8)–(11) within the weak-field approximation (assuming
that in the steady state ρee

m′ = 0 for all m′) is given by

|a|2

=
(

�2

4 + �2
a

)
η2

N2g4
eff + Ng2

eff (�κ − 2�a�c) + (
�2

4 + �2
a

)(
κ2 + �2

c

) ,

(12)

with the effective coupling strength

g2
eff = g2

0

∑
m

c2
mPm. (13)

Note that geff , like Pm, is in general a time-dependent
quantity. As the individual Clebsch-Gordan coefficients are
typically different for different transitions, the effective cou-
pling strength depends on the population of the individual
ground-state levels. So does the size of the normal-mode
splitting, which is derived from Eq. (12) as

�NMS = 2geff

√
N, (14)

valid under the same approximations as in Eq. (1). The fact
that the normal-mode splitting is proportional to

√
N means

that all N atoms contribute to a collective Dicke state. In-
deed, the indistinguishable nature of the atoms exchanging
photons with the cavity field implies that the atomic ensem-
ble forms a Dicke state. However, in our case, this state is
further partitioned following the statistical distribution over
the ground-state manifold [Eq. (13)]. The effective coupling
strength is plotted in Fig. 2 for various populations includ-
ing the situation realized in the experiment, where all levels
are initially equally populated. We will see in the following
section that the effective coupling strength and the normal-
mode splitting dynamically change when pumping between
the ground-state levels occurs.

III. EXPERIMENT

In order to detect the dependence of the normal-mode split-
ting on the distribution among different sublevels, a cold cloud
of 87Rb atoms is prepared in a magneto-optic trap (MOT)
and positioned in the mode volume of a near-confocal mul-

FIG. 2. Effective coupling strength g2
eff in units of the coupling

constant for various ground-state populations with cavity-driven π

transitions. The effective coupling strength of the steady state is
larger than that of the state with equal populations.

timode cavity with round-trip length l = 10 cm and finesse
F = 224 such that the full width at half maximum is νFWHM =
13.4 MHz [see Fig. 1(c)]. The single atom-cavity coupling is
g0 = 2π × 210 kHz (further experimental details are given
in [18]). Within the MOT, all sublevels of the 5S1/2, F = 2
ground state are assumed to be equally populated. The atoms
are then released from the MOT by switching off the MOT
lasers and accelerated due to gravity. Simultaneously, the
magnetic fields operating the MOT are switched off and in-
stead are tuned to compensate for the earth’s magnetic field.
Thus, all Zeeman sublevels are degenerate. The cavity length
is stabilized by a far-detuned lock laser such that the cavity
is resonant with the atomic transition from the ground to the
5P3/2, F ′ = 3 excited state. In order to detect the normal-mode
splitting, a weak, linearly polarized probe light field is coupled
into the cavity and detected in transmission on an avalanche
photodiode. The probe frequency is detuned with respect to
the transition by δp to the side of the fringe of one of the
normal modes [see Fig. 1(a)]. That way, the transmission
detects changes of the normal-mode splitting.

The measured transmitted power P is plotted in Fig. 3(a)
for a detuning of δp = +24 MHz, at which the probe laser
is set to the outer slope of the normal-mode splitting. We
observe that it first increases during time interval (i) and
then decreases during (ii). These two regimes can be bet-
ter understood studying the dynamics obtained by solving
Eqs. (8)–(11). In Fig. 3(a) we find that the transmitted power
P ∝ |a|2 coincides remarkably well with the measured one.
Note that the intracavity power (empty cavity, on resonance)
is fitted to Pcav = 2.4 nW, agreeing very well with the value
of Pcav = 2.7 nW that we determine from the measured power
transmitted through the cavity, with 1.5% transmission of the
outcoupling mirror of the cavity. Simulating the dynamics
of the effective coupling strength g2

eff and the population of
the ground-state levels Pm [Figs. 3(b) and 3(c), respectively],
we can see that the signal is dominated in regime (i) by the
change in the effective coupling strength due to a redistribu-
tion of the populations. Pumping with linearly polarized light
that drives π transitions leads to a higher occupation of sub-
levels with small m quantum numbers, as shown in Fig. 3(c).
These levels are coupled with larger Clebsch-Gordan coeffi-
cients, leading to a collectively enhanced effective coupling
strength, which increases by approximately 1 MHz [see
Fig. 3(b)]. Thus, �NMS increases and the peak of the normal-
mode splitting is shifted to higher frequencies, getting closer
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FIG. 3. Measured dynamics. (a) Measured and simulated cav-
ity transmission for probe detuning δp = +24 MHz, scaled to the
empty cavity maximum of Pcav = 2.4 nW and an atom number of
N = 11 200. Two time intervals can be identified, where the signal is
mainly dominated by (i) redistribution of atoms among the sublevels
by pumping and (ii) loss of atoms from the cavity. (b) Dynamics of
the collectively enhanced effective coupling strength corresponding
to the simulation in (a). (c) Time evolution of the populations Pm

of the ground-state levels, corresponding to the simulation in (a).
The inset shows the normal-mode spectrum at different times of the
dynamics. The dashed vertical line indicates the detuning used in the
measurement shown in (a).

to the probe frequency, by which the transmission increases.
For longer times, during time interval (ii), atoms are lost from
the cavity mode volume due to free expansion of the cloud.
Since �NMS is reduced in proportion to

√
N , this leads to the

observed decrease of cavity transmission in (ii).
Similar dynamics can be observed when the probe laser

is tuned to one of the other three slopes of the normal-mode
splitting, as shown in Fig. 4. The dynamics of the cavity
transmission at the inner sides of the normal-mode splitting

FIG. 4. Detuning-dependent transmitted power. Measured and
simulated cavity transmission as explained in Fig. 3(a) for different
values of δp. Measurements are averages over ten single tracks. Fitted
atom numbers are N−24 MHz = 10 600, N−15 MHz = 9200, N+15 MHz =
10 500, and N+24 MHz = 11 200 for the corresponding detunings δp,
consistent with the typical atoms number determined from the
normal-mode splitting. The fitted intracavity power Pcav = 2.4 nW
is equal for all curves.

(δp = ±15 MHz), i.e., the blue measurements shown in Fig. 4,
has an extra feature. There the initial increase of the �NMS

in region (i) leads to a decrease in the transmitted power.
The subsequent decrease of �NMS during (ii) increases the
transmission correspondingly, until a maximum is reached
when the peak frequency of the splitting coincides with the
probe frequency. After that, the transmission goes back to the
value of the empty cavity. All data curves are compared with
simulations (black lines), where for simplicity the cavity field
is assumed to be homogeneous within a thin cylinder con-
taining N (0) atoms, initially. The approximation is justified
by the fact that the 1/e radius R ∼ 500 μm of the Gaussian
density distribution of the atom cloud, measured by absorption
imaging, is much larger than the beam waist w0 = 80 μm of
the cavity mode, corresponding to a Rayleigh length which
is almost equal to the length of the cavity. The atom number
then evolves like the optical density inside the cavity mode
volume. In our simulations the loss of atoms from the cavity
is described by ballistic expansion of the cloud under the
action of gravity with a fixed temperature of the atoms of
T = 75 μK. The number N of atoms interacting with the cav-
ity and influencing the cavity field via (12) is thus decreasing
with time as

N (t ) = N (0)

(
R2

0

R(t )2

)2

exp

(
− z(t )2

R(t )2

)
, (15)

with

z(t ) = 1
2 gt2 (16)

and

R(t )2 = R2
0 + kBT

m
t2, (17)

where R0 is the 1/e radius of the atom cloud at t = 0, g
is the gravitational acceleration, and m is the mass of a
87Rb atom. Our numerical results are obtained by integrating
Eqs. (8)–(11), together with the explicit time dependence of
N (t ). The initial atom number N (0) in each curve is fitted
separately. The fitted values are consistent with the atom num-
ber N (0) = 10 000 ± 500 determined independently from the
normal-mode spectrum P(δp) as given by (12), where the
uncertainty is given by the 1σ standard deviation. Further
deviations between measurements and theoretical curves can
be caused by initial populations that are not perfectly equally
distributed or by small shot-to-shot-fluctuations of the cavity
detuning. In the experiment, the motional dynamics is more
complicated, as scattering of the probe light heats up the atoms
in the cavity. We do not simulate this temperature change, as
we are only interested in the internal state dynamics and its
influence on the collective coupling strength at early times. In
order to exclude mechanical action of the standing light wave
on the atoms, we calculate the depth of the dipole potential at
an antinode to be U = kB × 0.5 μK [26], with a laser detuning
of δp = 25 MHz, an intracavity laser power of Pcav = 2.4 nW,
and a beam waist of w0 = 80 μm. The potential depth is thus
substantially smaller than the temperature of the atom cloud,
which is on the order of tens of μK. We have also checked by
inspecting simulated trajectories of atoms that they are only
slightly influenced by the optical dipole potential.
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IV. NONLINEAR DYNAMICS

In this section we focus on the dynamics of the population
of the atomic ground states. We will perform a theoretical
investigation that shows how the multilevel structure of the
ground-state manifold is responsible for nonlinear effects. To
illustrate the underlying mechanism we resort to the simple
two-transition model shown in Fig. 1(b). Initially, all atoms
are prepared in the m = −1/2 level, and a circularly polar-
ized pumping field pumps all atoms to the m = +1/2 level.
Feedback is generated by the interaction with the cavity: The
strength of the cavity field depends via the collective coupling
strength on the exact population of the individual levels and
is thus dynamically varying. The nonlinearity becomes appar-
ent by deriving rate equations from the equations of motion
(8)–(11) in the weak driving limit. Here the populations are
slowly evolving while the cavity is adjusting instantaneously,
and the splitting follows proportionally to geff . We separate the
timescales by setting ȧ = σ̇ jm = ρ̇ee

jm = 0 and include weak
pumping by making the approximation σ z

jm(t ) ≈ −Pjm(t ) in
Eq. (9). Assuming again that all atoms follow the same
internal dynamics, the rate equations for the population of
state m = −1/2, P−, for this two-transition model are then
given by

Ṗ− = −�eff f (P−)P−, (18)

with the effective decay rate

�eff = c2
−η2

g2
0N2

β
1/2
1/2�

c2+(c2+ + u) + w
. (19)

The effective decay rate can be tuned by the cavity pumping
rate η2. The equation for P+ follows from P− + P+ = 1. The
nonlinearity of the dynamics is encoded in the function f (P−),
given by

f (P−) = 1

αP2− + βP− + 1
, (20)

with the parameters

α = (c2
− − c2

+)2

c2+(c2+ + u) + w
, (21)

β =2(c2
− − c2

+)
[
c2
+ + u

2

]
c2+(c2+ + u) + w

, (22)

where

u =�κ − 2�a�c

g2
0N

, (23)

w =
[(

�
2

)2 + �2
a

][
κ2 + �2

c

]
g4

0N2
, (24)

and c± are the Clebsch-Gordan coefficients for the transitions
with m = ±1/2, respectively. The dynamics determined by
these rate equations yield virtually the same results as the
consideration of the full equations (8)–(11). Note that rate
equations of the form (18) can be deduced also for multi-
ple ground states. In this case the nonlinear function f (Pj )
depends on the populations of all levels. The solution of
Eq. (18) in its implicit form t (P−), using the initial condition

FIG. 5. Nonlinear dynamics. (a) Parameters α and β appearing
in the differential equation (18), calculated for strong coupling with
g0

√
N/� = 10 (red and blue solid lines) and weak coupling with

g0

√
N/� = 0.01 (black solid lines, on top of each other). In the

simulation we set � = κ and �c = �a. The black dashed line is the
sum α + β and determines whether the initial dynamics for P− = 1
is accelerated (for positive values) or slowed down (for negative
values). (b) Simulated time dynamics of P−(t ) for weak and strong
coupling. In the weakly coupled case (black curve) the decay follows
an exponential function. Strong coupling can lead to acceleration
(cyan) or deceleration (pink) of this dynamics. The corresponding
detunings of �a = 0, �a = g0

√
N , and �a = 1.5g0

√
N have been

chosen as indicated by the symbols in (a). The laser power in the
different cases has been adjusted such that all curves start with the
same slope.

P−(t = 0) = 1, is

t = − 1

�eff

[
α

2
P2

− + βP− + ln(P−)

]
+ α + 2β

2�eff
. (25)

In the following we analyze a number of limiting cases of
the dynamics whose functional dependence is determined by
the parameters α and β. If both parameters are substantially
smaller than one, Eq. (18) reads

Ṗ− = −�effP− (26)

and the dynamics follow an exponential decay. As both
parameters are proportional to c2

− − c2
+, this can be exper-

imentally realized by driving π transitions, for which the
Clebsch-Gordan coefficients in the two-transition model are
equal, i.e., c2

− = c2
+. As can be seen in Fig. 5(a), the condition

|α|, |β| � 1 can also be reached by choosing large detunings
|�a| � g0

√
N or, for arbitrary detuning, by reducing the cou-

pling strength to values g0

√
N � � via the atom number in

order to be in the weak-coupling limit. This is equivalent to the
case of pumping the atoms in free space with no backaction
on the cavity field strength. The exponential decay of P− in
this weak-coupling regime can be observed in Fig. 5(b).
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The dynamics of P− in the strongly coupled cavity regime,
on the other hand, is highly nonlinear and can be acceler-
ated or decelerated, depending on the sign of α + β. This
is observable in Fig. 5(b), where we compare the dynamics
P−(t ) in the weak- and strong-coupling regimes. In order to
make a fair comparison, we tune the cavity pumping rate η2

such that the initially absorbed light power proportional to
Pcav(0)/[�2

a + (�/2)2] is equal in all cases. Thus, the decay
starts with the same slope and only the influence of α and β

on the dynamics becomes visible, i.e., acceleration of the dy-
namics for |�a| = g0

√
N and deceleration for �a = 0, where

α + β is larger and smaller than zero, respectively. The case of
|�a| = g0

√
N is particularly interesting, because in this case

the parameter β = 0, whereas α reaches a maximum which
scales for strong coupling like

α = (c2
− − c2

+)2 g2
0N(

�
2 + κ

)2 . (27)

As can be seen in Fig. 5, the maximum of α reaches values
much larger than one such that differential equation (18) can
be approximated as

Ṗ− = −�eff

α

1

P−
= − 1

2τ

1

P−
, (28)

which is valid as long as αP2
− > 1. The solution of Eq. (28) is

not an exponential,

P−(t ) =
√

1 − t

τ
. (29)

The dynamics for sufficiently short times, i.e., for t much
smaller that the characteristic timescale τ , thus follows a
square root law. For later times, where αP2

− < 1, the third term

in the denominator of Eq. (20) dominates and the dynamics
follows again an exponential decay.

V. CONCLUSION

This paper has revealed a nonlinearity in a system of
atoms inside an optical cavity in the collective strong-coupling
regime. The nonlinearity does not require saturation or me-
chanical backaction. Instead, it is only based on the existence
of multilevel ground states with unequal Clebsch-Gordan co-
efficients, which results in an effective coupling strength that
depends on the occupation of the individual sublevels. Thus,
pumping between the sublevels can dynamically change the
effective coupling strength and the intracavity field strength.
We experimentally observed this dynamics by detecting the
cavity transmission. We furthermore showed that backaction
of the population dynamics on the cavity field strength leads
to nonexponential decay that can be accelerated or decelerated
compared to when the system is pumped with constant field
strength. Based on our findings for weak driving, it would be
interesting to investigate further the limit of strong driving,
including saturation, and see whether atoms with multilevel
ground states behave qualitatively different in comparison to
two-level atoms.
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